Advertisements
Advertisements
प्रश्न
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
उत्तर
Let I = `int_2^3 x/(x^2 - 1)*dx`
Put x2 – 1 = t
∴ 2x·dx = dt
∴ x·dx = `(1)/(2)*dt`
When x = 2, t = 22 – 1 = 3
When x = 3, t = 32 – 1 = 8
∴ I = `int_3^8 (1)/"t"*"dt"/(2)`
= `(1)/(2)int_3^8 "dt"/"t"`
= `(1)/(2)[log |"t"|]_3^8`
= `(1)/(2)(log 8 - log 3)`
∴ I = `(1)/(2) log (8/3)`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`