Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
उत्तर
Let I = `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`.
Here `a = pi/(2)`.
Hence In I, we change x by `pi/(2) - x`.
∴ I = `int_0^(pi/2) (sin(pi/2 - x) - cos(pi/2 - x))/(1 + sin(pi/2 - x) cos(pi/2 - x)`
= `int_0^(pi/2) (cosx - sinx)/(1 + cosx sinx)*dx`
= `- int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
= – I
∴ 2I = 0
∴ I = 0.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate:
`int_0^1 |x| dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int _1^3logxdx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`