Advertisements
Advertisements
प्रश्न
Evaluate the following definite integral:
`int_1^3 logx.dx`
उत्तर
Let I = `int_1^3 logx.dx`
= `int_1^3 logx.1.dx`
= `|logx int1.dx|_1^3 - int_1^3 [d/dx (logx) int1.dx].dx`
= `|logx.x int_1^3 - int_1^3 1/x. x. dx|`
= `|logx. x int_1^3 - int_1^3 1.dx|`
=`[x.log x]_1^3 - [x]_1^3`
= (3 . log 3 − 1 . log 1) − (3 − 1)
= (3 log 3 – 0) – 2
= 3 log 3 – 2
= log 33 – 2
∴ I = log 27 – 2
APPEARS IN
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
`int_1^2 x^2 "d"x` = ______
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Solve the following.
`int_1^3 x^2 log x dx `
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`