Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
उत्तर
Let I = `int_(−9)^9 x^3/(4 − x^2).dx`
We know that, If f(−x) = f(x), f(x) is an even function. If f(−x) = −f(x), f(x) is an odd function.
f(x) = `x^3/(4 – x^2)`
∴ f(– x) = `(– x)^3/[4 – ( – x)^2]`
∴ f(– x) = `(−x^3)/(4 – x^2)`
∴ f(– x) = – f(x)
∴ If f(−x) = −f(x), f(x) is an odd function.
∴ `int_(−9)^9 x^3/(4 − x^2).dx = 0 ...[int_(−"a")^"a" f(x) = 0, if f(x) "odd function"]`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`