Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
उत्तर
Let I = `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Put x = tan θ.
∴ dx = sec2θ·dθ
and
x2 + 1 = tan2θ + 1 = sec2θ
When x = 0, tan θ = 0 ∴ θ = 0
When x = 1, tan θ = 1 ∴ θ = `pi/(4)`
∴ I = `int_0^(pi/4) (log(tan theta + 1))/sec^2 theta* sec2 theta *d theta`
= `int_0^(pi/4) log(1 + tan theta)*d theta` ...(1)
We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`.
Here, a = ``pi/(4).
Hence changing θ by `pi/(4) - theta`, we have,
I = `int_0^(pi/4) log[1 + tan(pi/4 - theta)]*d theta`
= `int_0^(pi/4) log(1 + (1- tan theta)/(1 + tan theta))*d theta`
= `int_0^(pi/4) log((1 + tan theta + 1 - tan theta)/(1 + tan theta))*d theta`
= `int_0^(pi/4) log(2/(1 + tan theta))*d theta`
= `int_0^(pi/4) [log 2 - log (1 + tan theta)]*d theta`
= `log 2 int_0^(pi/4) 1*d theta - int_0^(pi/4) log(1 + tan theta)*d theta`
= `(log 2) [theta]_0^(pi/4) - "I"`
= `pi/(4) log 2 - "I"`
∴ 2I = `pi/(4) log 2`
∴ I = `pi/(8) log 2`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
If `int_0^"a" (2x + 1) "d"x` = 2, find a
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_1^3 log x "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`