हिंदी

Evaluate the following : ∫01log(x+1)x2+1⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`

योग

उत्तर

Let I = `int_0^1 (log(x + 1))/(x^2 + 1)*dx`

Put x = tan θ.
∴ dx = sec2θ·dθ 
and
x2 + 1 = tan2θ + 1 = sec2θ

When x = 0, tan θ = 0    ∴ θ = 0

When x = 1, tan θ = 1    ∴ θ = `pi/(4)`

∴ I = `int_0^(pi/4) (log(tan theta + 1))/sec^2 theta* sec2 theta *d theta`

= `int_0^(pi/4) log(1 + tan theta)*d theta`           ...(1)

We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`.

Here, a = ``pi/(4).

Hence changing θ by `pi/(4) - theta`, we have,

I = `int_0^(pi/4) log[1 + tan(pi/4 - theta)]*d theta`

= `int_0^(pi/4) log(1 + (1- tan theta)/(1 + tan theta))*d theta`

= `int_0^(pi/4) log((1 + tan theta + 1 - tan theta)/(1 + tan theta))*d theta`

= `int_0^(pi/4) log(2/(1 + tan theta))*d theta`

= `int_0^(pi/4) [log 2 - log (1 + tan theta)]*d theta`

= `log 2 int_0^(pi/4) 1*d theta - int_0^(pi/4) log(1 + tan theta)*d theta`

= `(log 2) [theta]_0^(pi/4) - "I"`

= `pi/(4) log 2 - "I"`

∴ 2I = `pi/(4) log 2`

∴ I = `pi/(8) log 2`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 3.1 | पृष्ठ १७२

संबंधित प्रश्न

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_1^3 log x  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral:

`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×