Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
उत्तर
Let I = `int_1^2 dx/(x^2 + 6x + 5)`
= `int_1^2 dx/(x^2 + 6x + 9 - 9 + 5)`
= `int_1^2 dx/((x + 3)^2 - (2)^2`
= `(1)/(2 x 2)[log|(x + 3 - 2)/(x + 3 + 2)|]_1^2`
= `(1)/(4)[log|(x + 1)/(x + 5)|]_1^2`
= `(1)/(4)[log (3)/(7) - log (2)/(6)]`
= `(1)/(4)log(3/7 xx 6/2)`
∴ I `(1)/(4)log(9/7)`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite intergral:
`int _1^3logxdx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`