Advertisements
Advertisements
Question
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Solution
Let I = `int_1^2 dx/(x^2 + 6x + 5)`
= `int_1^2 dx/(x^2 + 6x + 9 - 9 + 5)`
= `int_1^2 dx/((x + 3)^2 - (2)^2`
= `(1)/(2 x 2)[log|(x + 3 - 2)/(x + 3 + 2)|]_1^2`
= `(1)/(4)[log|(x + 1)/(x + 5)|]_1^2`
= `(1)/(4)[log (3)/(7) - log (2)/(6)]`
= `(1)/(4)log(3/7 xx 6/2)`
∴ I `(1)/(4)log(9/7)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`