Advertisements
Advertisements
Question
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solution
Let I = `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
= `int_0^1((x^2 + 3x + 2)/x^(1/2))*dx`
= `int_0^1(x^2/x^(1/2) + (3x)/x^(1/2) + (2)/x^(1/2))*dx`
= `int_0^1(x^(1/2) + 3x^(1/2) + 2x^(1/2))*dx`
= `int_0^1x^(3/2)*dx + 3int_0^1 x^(1/2)*dx + 2int_0^1 x^(1/2)*dx`
= `[(x^5/2)/(5/2)]_0^1 + 3[(x^3/2)/(3/2)]_0^1 + 2[(x^1/2)/(1/2)]_0^1`
= `(2)/(5)(1 - 0) 3 xx (2)/(3)(1 - 0) + 2 xx 2(1 - 0)`
= `(2)/(5) 2 + 4`
∴ I = `(32)/(5)`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
`int_1^2 x^2 "d"x` = ______
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Solve the following.
`int_1^3x^2 logx dx`