Advertisements
Advertisements
Question
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Solution
Let I = `int_1^2 (3x)/((9x^2 - 1))*dx`
= `3int_1^2 x/(9x^2 - 1)*dx`
Put 9x2 – 1 = t
∴ 18x · dx = dt
∴ x · dx = `(1)/(18)*dx`
When x = 1, t = 9(1)2 – 1 = 8
When x = 2, t = 9(2)2 – 1 = 35
∴ I = `3int_8^35 (1)/"t"*"dt"/(18)`
= `(1)/(6) int_8^35 "dt"/"t"`
= `(1)/(6)[log|"t"|]_8^35`
= `(1)/(6) (log 35 - log 8)`
∴ I = `(1)/(6)log(35/8)`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Solve the following.
`int_1^3 x^2 logx dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`