English

Prove that: ∫1a2-x2dx=12alog(a+xa-x)+c - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`

Sum

Solution

Let I = `int1/(a^2 - x^2)dx`

= `intdx/((a - x)(a + x))`

= `1/(2a) int (1/(a + x) + 1/(a - x))dx`

= `1/(2a) [int dx/(a + x) + int dx/(a - x)]`

= `1/(2a) [log (a + x) + (log (a - x))/-1] + c`

= `1/(2a) [log (a + x) - log (a - x)] + c`

= `1/(2a) log ((a + x)/(a - x)) + c`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
2017-2018 (March)

RELATED QUESTIONS

Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_1^2 x^2*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×