English

Evaluate the following : ∫-33x39-x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`

Sum

Solution

Let I = `int_(-3)^(3) x^3/(9 - x^2)*dx`

Let f(x) = `x^3/(9 - x^2)`

∴ f( –x) = `(-x)^3/(9 - (- x)^2`

= `(-x^3)/(9 - x^2)`

= `-f(x)`

∴ f is an odd function.

∴ `int_-3^3 f(x)*dx = 0, "i.e." int_-3^3 x^3/(9 - x^2)*dx` = 0.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Solve the following.

`int_1^3 x^2 log x dx `


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×