Advertisements
Advertisements
Question
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
Solution
Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x ......(i)
Putting x = – 2 in (i), we get
– 2 + 3 = A(0) + B(– 2)
∴ 1 = – 2B
∴ B = `-1/2`
Putting x = 0 in (i), we get
0 + 3 = A(0 + 2) + B(0)
∴ 3 = 2A
∴ A = `3/2`
∴ A = `3/2`, B = `-1/2`
∴ I = `int_1^2[(3/2)/x + ((-1/2))/(x + 2)] "d"x`
∴ I = `[3/2 log x + -1/2 log (x + 2)]_1^2`
= `3/2 (log 2 - log 1) - 1/2 (log 4 - log 3)`
= `3/2 (log 2 - 0) - 1/2 log (4/3)`
= `1/2 log 2^3 - 1/2 log (4/3)`
= `1/2 (log8 - log 4/3)`
= `1/2 log (8 xx 3/4)`
∴ I = `1/2 log 6`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`