Advertisements
Advertisements
Question
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Solution
`int_0^(pi/4) sin 4x sin 3x *dx`
= `(1)/(2) int_0^(pi/4) 2 sin 4x sin 3x *dx`
= `(1)/(2) int_0^(pi/4) [cos (4x - 3x) - cos(4x + 3x)]*dx`
= `(1)/(2) int_0^(pi/4) cos x*dx - (1)/(2) int^(pi/4)cos 7x*dx`
= `(1)/(2)[sinx]_0^(pi/4) - (1)/(2)[(sin7x)/7]_0^(pi/4)`
= `(1)/(2)[sin pi/4 - sin 0] - (1)/(14)[sin (7pi)/4 - sin 0]`
= `(1)/(2)[1/sqrt(2) - 0] - (1)/(14)[sin (2pi - pi/4) - 0]`
= `(1)/(2sqrt(2)) - (1)/(14)(- sin pi/4)`
= `(1)/(2sqrt(2)) + (1)/(14sqrt(2))`
= `(7 + 1)/(14sqrt(2))`
= `(4)/(7sqrt(2))`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Solve the following.
`int_1^3 x^2 logx dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`