Advertisements
Advertisements
Question
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Solution
Let I = `int_0^pi x*sinx*cos^4x*dx` ...(1)
We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`
Here a = π.
Hence changing x by π – x, we get
I = `int_0^pi (pi - x)*sin(pi - x)*[cos(pi - x)]^4*dx`
= `int_0^pi (pi - x)*sinx*cos^4x*dx` ...(2)
Adding(1) and (2), we get
2I = `int_0^pi x*sinx*cos^4x*dx + int_0^pi (pi - x)*sinx*cos^4x*dx`
= `int_0^pi (x + pi - x)*sinx*cos^4x*dx`
= `pi int_0^pi sinx*cos^4x*dx`
∴ I = `pi/(2) int_0^pi cos^4x*sinx*dx`
Put cos = t
∴ – sinx · dx = dt
∴ sinx · dx = – dt
When x 0, t = cos 0 = 1
When x = π cos π = – 1
∴ I = `pi/(2) int_1^(-1) t^4(- dt)`
= `- pi/(2) int_(1)^(-1) t^4*dt`
= `- pi/(2)[(t^5)/5]_1^(-1)`
= `- pi/(10)[t^5]_1^(-1)`
= `- pi/(10)[(- 1)^5 - (1)^5]`
= `- pi/(10) (- 1 - 1)`
= `(2pi)/(10)`
= `pi/(5)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_0^2 e^x*dx` = ________
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
`int_1^2 x^2 "d"x` = ______
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`