English

Evaluate the following : ∫0πx⋅sinx⋅cos4x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`

Sum

Solution

Let I = `int_0^pi x*sinx*cos^4x*dx`              ...(1)

We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`

Here a = π.
Hence changing x by π – x, we get

I = `int_0^pi (pi - x)*sin(pi - x)*[cos(pi - x)]^4*dx`

= `int_0^pi (pi - x)*sinx*cos^4x*dx`          ...(2)
Adding(1) and (2), we get

2I = `int_0^pi x*sinx*cos^4x*dx + int_0^pi (pi - x)*sinx*cos^4x*dx`

= `int_0^pi (x + pi - x)*sinx*cos^4x*dx`

= `pi int_0^pi sinx*cos^4x*dx`

∴ I = `pi/(2) int_0^pi cos^4x*sinx*dx`

Put cos = t
∴ – sinx · dx = dt
∴ sinx · dx = – dt
When x  0, t = cos 0 = 1
When x = π cos π = – 1

∴ I = `pi/(2) int_1^(-1) t^4(- dt)`

= `- pi/(2) int_(1)^(-1) t^4*dt`

= `- pi/(2)[(t^5)/5]_1^(-1)`

= `- pi/(10)[t^5]_1^(-1)`

= `- pi/(10)[(- 1)^5 - (1)^5]`

= `- pi/(10) (- 1 - 1)`

= `(2pi)/(10)`

= `pi/(5)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.08 | Page 176

RELATED QUESTIONS

Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


`int_1^2 x^2  "d"x` = ______


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×