Advertisements
Advertisements
Question
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Options
True
False
Solution
False
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_1^2 x^2*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 log x dx `
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`