Advertisements
Advertisements
Question
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Solution
Let I = `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx` ...(i)
= `int_1^2 sqrt(1 + 2 - x)/(sqrt(3 - (1 + 2 - x)) + sqrt(1 + 2 - x))*dx ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`
∴ I = `int_1^2 sqrt(3 - x)/(sqrt(x) + sqrt(3 - x))*dx` ...(ii)
Adding (i) and (ii), we get
2I = `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx + int_1^2 sqrt(3 - x)/(sqrt(x) + sqrt(3 - x))*dx`
= `int_1^2 (sqrt(x) + sqrt(3 - x))/(sqrt(x) + sqrt(3 - x))*dx`
= `int_1^2 1*dx`
= `[x]_1^2`
∴ 2I = 2 – 1 = 1
∴ I = `(1)/(2)`.
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
If `int_0^"a" (2x + 1) "d"x` = 2, find a
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_1^3x^2 logx dx`