English

Evaluate the following integrals : ∫25xx+7-x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`

Sum

Solution

Let I = `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`      ...(i)

= `int_2^5 sqrt(2 + 5 - x)/(sqrt(2 + 5 - x) + sqrt(7 - (2 + 5 - x)))*dx        ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`

∴ I = `int_2^5 sqrt(7 - x)/(sqrt(7 - x) + sqrt(x))*dx`       ...(ii)
Adding (i) and (ii), we get

2I = `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx + int_2^5 sqrt(7 - x)/(sqrt(7 - x) + sqrt(x))*dx` 

= `int_2^5 (sqrt(x) + sqrt(7 - x))/(sqrt(x) + sqrt(7 - x))*dx`

= `int_2^5 1*dx`

= `[x]_2^5`

∴ 2I = 5 – 2 = 3
∴ I = `(3)/(2)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Definite Integration - EXERCISE 6.2 [Page 148]

APPEARS IN

RELATED QUESTIONS

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Evaluate :  ∫ log (1 + x2) dx


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


Evaluate `int_1^3 x^2*log x  "d"x`


`int_-1^1x^2/(1+x^2)  dx=` ______.


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_0^pi x sin^2x dx` = ______ 


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


`int_0^1 1/(2x + 5) dx` = ______.


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate:

`int_0^6 |x + 3|dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×