Advertisements
Advertisements
Question
Evaluate : ∫ log (1 + x2) dx
Solution
Let I = ∫ log (1 + x2) dx
Put x = tan θ
∴ dx = sec2 θ d θ
`therefore "I" = int "log" (1 + "tan"^2 theta) . "sec"^2 theta "d" theta`
`= int "log"("sec"^2 theta) . "sec"^2 theta "d" theta`
`= 2 int "log" (sec theta) . "sec"^2 theta "d" theta`
`= 2 ["log" ("sec") theta . int "sec"^2 theta "d" theta - int ["d"/("d" theta) "log" ("sec" theta) . int "sec"^2 theta "d" theta] "d" theta]`
`= 2 xx ["log" ("sec" theta) . "tan" theta - int ("sec" theta . "tan" theta)/("sec" theta) . "tan" theta "d" theta]`
`= 2 ["log" ("sec" theta) . "tan" theta - int "tan"^2 "d" theta]`
`= 2 ["tan" theta . "log" ("sec" theta) - int ("sec"^2 theta - 1) "d" theta]`
`= "tan" theta . "log" ("sec"^2 theta) - 2 "tan" theta + 2 theta + "C"`
`= "x" . "log" (1 + "x"^2) - "2x" + 2 "tan"^-1 "x" + "C"`
APPEARS IN
RELATED QUESTIONS
Evaluate : `intlogx/(1+logx)^2dx`
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^1 (1 - x)^5`dx = ______.
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
`int_0^1|3x - 1|dx` equals ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate:
`int_0^6 |x + 3|dx`