English

Evaluate : - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate :  ∫ log (1 + x2) dx

Sum

Solution

Let I = ∫ log (1 + x2) dx

Put x = tan θ

∴ dx = sec2 θ  d θ

`therefore "I" = int  "log" (1 + "tan"^2 theta) . "sec"^2 theta   "d" theta` 


`= int  "log"("sec"^2 theta) . "sec"^2 theta  "d" theta`


`= 2 int  "log"  (sec theta) . "sec"^2 theta  "d" theta`


`= 2 ["log" ("sec")  theta . int  "sec"^2 theta  "d" theta - int  ["d"/("d" theta) "log"  ("sec" theta) . int  "sec"^2 theta  "d" theta] "d" theta]`


`= 2 xx ["log"  ("sec"  theta) . "tan"  theta -  int  ("sec"  theta . "tan" theta)/("sec" theta) . "tan"  theta  "d"  theta]`


`= 2  ["log"  ("sec"  theta) . "tan"  theta - int  "tan"^2  "d" theta]`


`= 2 ["tan"  theta . "log" ("sec"  theta) - int ("sec"^2 theta - 1)  "d"  theta]`


`= "tan"  theta . "log" ("sec"^2  theta) - 2  "tan"  theta + 2   theta + "C"`


`= "x" . "log" (1 + "x"^2) - "2x" + 2 "tan"^-1 "x" + "C"`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (October)

APPEARS IN

RELATED QUESTIONS

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^1 (1 - x)^5`dx = ______.


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


`int_0^1|3x - 1|dx` equals ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate:

`int_0^6 |x + 3|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×