English

Evaluate ∫ 1 X ( 3 + Log X ) D X - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate`int (1)/(x(3+log x))dx` 

Sum

Solution

`int (1)/(x(3+log x))dx`  

Put  `3+log x=t` 

`1/x dx=dt` 

∴ `int dt/t+c`

`int dt/(3 +t)`

= `log [3 + t] + c

= `log (3+log x)+c`

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March)

APPEARS IN

RELATED QUESTIONS

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate :  ∫ log (1 + x2) dx


Evaluate = `int (tan x)/(sec x + tan x)` . dx


`int_0^1 "e"^(2x) "d"x` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


Evaluate `int_1^3 x^2*log x  "d"x`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^1 (1 - x)^5`dx = ______.


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Solve the following.

`int_1^3 x^2 logx  dx`


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×