English

Show that ∫0af(x)g(x)dx=2∫0af(x)dx if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4. - Mathematics

Advertisements
Advertisements

Question

Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.

Sum

Solution

Let `I = int_0^a f(x) g(x) dx`

`= int_0^a f(a - x) [4 - g(a - x)] dx`

`= 4 int_0^a f(a - x) dx - int_0^a f(a - x) g (a - x)  dx`

Let a - x = t

⇒ - dx = dt

When x = 0, t = a

and x = a, t = 0

`I = -4 int_a^0 f (t) dt + int_a^0 f (t) g (t) dt`

`= 4 int_0^a f (t) dt - int_0^a f (t) g (t)  dt`

`= 4 int_0^a f (x) dx - int_0^a f (x)g (x) dx `

`= 4 int_0^a f (x) dx - I`

⇒ `2I = 4 int_0^a f (x) dx`

Hence, `I = 2 int_0^a f (x) dx`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 19 | Page 347

RELATED QUESTIONS

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate :  ∫ log (1 + x2) dx


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×