Advertisements
Advertisements
Question
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
Solution
Let `I = int_0^(pi/2) cos^2 x dx` ....(i)
and `I = int_0^(pi/2) cos^2 (pi/2 - x) dx`
`= int_0^(pi/2) sin^2 x dx` ....(ii) `[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
Adding (i) and (ii), we get
`2 I = int_0^(pi/2) cos^2 x dx + int_0^(pi/2) sin^2 x dx`
`= int_0^(pi/2) (sin^2 x + cos^2 x) dx`
`= int_0^(pi/2) dx = [x]_0^(pi/2)`
`= pi/2`
⇒ `I = pi/4.`
APPEARS IN
RELATED QUESTIONS
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate`int (1)/(x(3+log x))dx`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_0^1 "e"^(2x) "d"x` = ______
`int_1^2 1/(2x + 3) dx` = ______
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^1 (1 - x)^5`dx = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_0^pi x sin^2x dx` = ______
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Evaluate:
`int_0^1 |2x + 1|dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`