English

Evaluate : Int "E"^(3"X")/("E"^(3"X") + 1) Dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx

Sum

Solution

Let I = `"e"^(3"x")/("e"^(3"x") + 1)` dx

Put e3x + 1 = t

Diff. both the sides w.r.t. x 

3 e3x = dt ⇒  e3x  dx = `"dt"/3`

`therefore "I" = 1/3 int  "dt"/"t"`

`= 1/3 "log" |"t"| + "c"`

`= 1/3 "log" |e^(3x) + 1| + "C"`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (July)

APPEARS IN

RELATED QUESTIONS

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_0^1 "e"^(2x) "d"x` = ______


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


Evaluate `int_1^3 x^2*log x  "d"x`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^pi x sin^2x dx` = ______ 


`int_0^1 "e"^(5logx) "d"x` = ______.


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×