English

Prove that ∫ a 0 F ( X ) D X = ∫ a 0 F ( a − X ) D X , Hence Evaluate ∫ π 0 X Sin X 1 + Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`

Sum

Solution

To prove: `int_0^a "f"("x") "dx" = int_0^a "f" ("a - x") "dx"`

Proof: Let t = a - x
⇒ dt = - dx
When x = 0, t = a
When x = a , t = 0
Putting the value of x in LHS

`int_a^0 "f"("a - t") (- "dt")`

= `- int_a^0 "f" ("a - t") ("dt")`

= `int_0^a "f" ("a - t") ("dt")`

= `int_0^a ("a - x") ("dx")      ...(∵ int_a^b "f" (t) "dt" = int_a^b ("x")( "dx"))` 
= RHS

Using this we can solve the given question as follows:

`I = int_0^pi f ("x") d"x" = int_0^pi (pi - "x") "dx"`

⇒ `2I = int_0^pi f ("x") d"x" + int_0^pi f (pi - "x") d"x" = int_0^pi ("x" sin "x")/(1 + cos^2 "x") d"x" + int_0^pi ((pi - "x") sin(pi - "x"))/(1 + cos^2 (pi - "x")) d"x"`

 

⇒`2"I" = int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx" + int_0^pi ((pi - "x")sin"x")/(1 + cos^2 (pi - "x")) "dx"`


⇒ `2"I" = int_0^pi (pi sin"x")/(1 + cos^2 "x") "dx"`


Let, cos x = t ⇒ -sin x dx = dt

⇒ `2"I" = -int_1^-1 (pi)/(1 + t^2) dt = -pi [ tan^-1 t ]_1^(-1) = -pi(-pi/(4) - pi/(4)) = pi^2/(2)`


∴ `"I" = pi^2/(4)`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/1/3

RELATED QUESTIONS

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


`int_1^2 x logx  dx`= ______


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×