Advertisements
Advertisements
Question
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Solution
To prove: `int_0^a "f"("x") "dx" = int_0^a "f" ("a - x") "dx"`
Proof: Let t = a - x
⇒ dt = - dx
When x = 0, t = a
When x = a , t = 0
Putting the value of x in LHS
`int_a^0 "f"("a - t") (- "dt")`
= `- int_a^0 "f" ("a - t") ("dt")`
= `int_0^a "f" ("a - t") ("dt")`
= `int_0^a ("a - x") ("dx") ...(∵ int_a^b "f" (t) "dt" = int_a^b ("x")( "dx"))`
= RHS
Using this we can solve the given question as follows:
`I = int_0^pi f ("x") d"x" = int_0^pi (pi - "x") "dx"`
⇒ `2I = int_0^pi f ("x") d"x" + int_0^pi f (pi - "x") d"x" = int_0^pi ("x" sin "x")/(1 + cos^2 "x") d"x" + int_0^pi ((pi - "x") sin(pi - "x"))/(1 + cos^2 (pi - "x")) d"x"`
⇒`2"I" = int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx" + int_0^pi ((pi - "x")sin"x")/(1 + cos^2 (pi - "x")) "dx"`
⇒ `2"I" = int_0^pi (pi sin"x")/(1 + cos^2 "x") "dx"`
Let, cos x = t ⇒ -sin x dx = dt
⇒ `2"I" = -int_1^-1 (pi)/(1 + t^2) dt = -pi [ tan^-1 t ]_1^(-1) = -pi(-pi/(4) - pi/(4)) = pi^2/(2)`
∴ `"I" = pi^2/(4)`
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate`int (1)/(x(3+log x))dx`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
`int_1^2 x logx dx`= ______
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`