Advertisements
Advertisements
Question
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Solution
`int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Put 2 + sin x = t
⇒ 1 + sin x = t - 1
cos x dx = dt
`int_ ("dt")/(("t" -1) "t")`
= `int_ ((1)/("t" - 1) - (1)/("t")) "dt"`
= `int_ (1)/("t" -1) "dt" - int 1/"t" "dt"`
= log (t - 1) - log t + C
= log (2 + sin x - 1) - log (2 + sin x) + C
= log (1 + sin x) - log (2 + sin x) + C
= `"log" ((1+ sin "x")/(2 + sin "x")) + "C" ` ...`(∵ "log m" - "log n" = "log" ("m"/"n"))`
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
tan4x
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
Find the integrals of the function:
sin−1 (cos x)
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int sinx/(3 + 4cos^2x) "d"x` = ______.
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is