Advertisements
Advertisements
Question
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Solution
Let I = `int (1 + cosx)/(x + sinx) "d"x`
Put x + sin x = t
⇒ (1 + cos x)dx = dt
∴ I = `int 1/"t" "dt"`
= `log|"t"| + "C"`
= `log |x + sin x| + "C"`
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
sin−1 (cos x)
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find `int "dx"/(2sin^2x + 5cos^2x)`
Find `int x^2tan^-1x"d"x`
`int "dx"/(sin^2x cos^2x)` is equal to ______.
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.