Advertisements
Advertisements
Question
Find `int "dx"/(2sin^2x + 5cos^2x)`
Solution
Dividing numerator and denominator by cos2x, we have
I = `int (sec^2x "d"x)/(2tan^2x + 5)`
Put tanx = t
So that sec2x dx = dt.
Then I = `int "dt"/(2"t"^2 + 5) = 1/2 int "dt"/("t"^2 + (sqrt(5/2))^2`
= `1/2 sqrt(2)/sqrt(5) tan^-1 ((sqrt(2)"t")/sqrt(5)) + "C"`
= `1/sqrt(10) tan^-1 ((sqrt(2)tanx)/sqrt(5)) + "C"`.
APPEARS IN
RELATED QUESTIONS
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Evaluate `int_0^(3/2) |x sin pix|dx`
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Evaluate `int tan^8 x sec^4 x"d"x`
`int "dx"/(sin^2x cos^2x)` is equal to ______.
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to