Advertisements
Advertisements
प्रश्न
Find `int "dx"/(2sin^2x + 5cos^2x)`
उत्तर
Dividing numerator and denominator by cos2x, we have
I = `int (sec^2x "d"x)/(2tan^2x + 5)`
Put tanx = t
So that sec2x dx = dt.
Then I = `int "dt"/(2"t"^2 + 5) = 1/2 int "dt"/("t"^2 + (sqrt(5/2))^2`
= `1/2 sqrt(2)/sqrt(5) tan^-1 ((sqrt(2)"t")/sqrt(5)) + "C"`
= `1/sqrt(10) tan^-1 ((sqrt(2)tanx)/sqrt(5)) + "C"`.
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
Find `int dx/(x^2 + 4x + 8)`
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Find `int x^2tan^-1x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.