हिंदी

Find d∫x2x4+3x2+2dx - Mathematics

Advertisements
Advertisements

प्रश्न

Find `int x^2/(x^4 + 3x^2 + 2) "d"x`

योग

उत्तर

Put x2 = t

Then 2x dx = dt.

Now I = `int (x^3"d"x)/(x^4 + 3x^2 + 2)`

= `1/2 int  "tdt"/("t"^2 + 3"t" + 2)`

Consider `"t"/("t"^2 + 3"t" + 2) = "A"/("t" + 1) + "B"/("t" + 2)`

Comparing coefficient, we get A = –1, B = 2.

Then I = `1/2[2 int "dt"/("t" + 2) - int "dt"/("t" + 1)]`

= `1/2 [2log|"t" + 2| - log|"t" + 1|]`

= `log|(x^2 + 2)/sqrt(x^2 + 1)| + "C"`

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Solved Examples [पृष्ठ १४९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Solved Examples | Q 7 | पृष्ठ १४९

संबंधित प्रश्न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×