Advertisements
Advertisements
प्रश्न
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
उत्तर
Put x2 = t
Then 2x dx = dt.
Now I = `int (x^3"d"x)/(x^4 + 3x^2 + 2)`
= `1/2 int "tdt"/("t"^2 + 3"t" + 2)`
Consider `"t"/("t"^2 + 3"t" + 2) = "A"/("t" + 1) + "B"/("t" + 2)`
Comparing coefficient, we get A = –1, B = 2.
Then I = `1/2[2 int "dt"/("t" + 2) - int "dt"/("t" + 1)]`
= `1/2 [2log|"t" + 2| - log|"t" + 1|]`
= `log|(x^2 + 2)/sqrt(x^2 + 1)| + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate :
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`