Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here, }a = 1, b = 3, f\left( x \right) = 2x + 3, h = \frac{3 - 1}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_1^3 \left( 2x + 3 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 1 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 2 + 3 \right) + \left( 2 + 2h + 3 \right) + . . . . . . . . . . . . . . . + \left\{ 2 + 2\left( n - 1 \right)h + 3 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 5n + 2h\left\{ 1 + 2 + 3 . . . . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 5n + 2h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ 5n + 2n - 2 \right]\]
\[ = \lim_{n \to \infty} 2\left( 7 - \frac{2}{n} \right)\]
\[ = 14\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Choose the correct alternative:
If n > 0, then Γ(n) is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`