Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
उत्तर
We have,
\[\left| \sin2\pi x \right| = \begin{cases}\left( \sin2\pi x \right),& 0 \leq x \leq \frac{1}{2}\\ - \left( \sin2\pi x \right),& \frac{1}{2} \leq x \leq 1\end{cases}\]
\[ \therefore \int_0^1 \left| \sin2\pi x \right| d x = \int_0^\frac{1}{2} \sin2\pi x dx + \int_\frac{1}{2}^1 - \sin2\pi x dx\]
\[ = \left[ \frac{- \cos2\pi x}{2\pi} \right]_0^\frac{1}{2} + \left[ \frac{\cos2\pi x}{2\pi} \right]_\frac{1}{2}^1 \]
\[ = \frac{1}{2\pi} + \frac{1}{2\pi} + \frac{1}{2\pi} + \frac{1}{2\pi}\]
\[ = \frac{2}{\pi}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`