Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let }I = \int_0^\frac{\pi}{2} \sqrt{1 + \sin x } d x . Then, \]
\[I = \int_0^\frac{\pi}{2} \sqrt{1 + \sin x} \times \frac{\sqrt{1 - \sin x}}{\sqrt{1 - \sin x}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sqrt{1 - \sin^2 x}}{\sqrt{1 - \sin x}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\cos x}{\sqrt{1 - \sin x}} dx\]
\[Let 1 - \sin x = u\]
\[ \Rightarrow - \cos x dx = du\]
\[ \therefore I = \int\frac{- du}{\sqrt{u}}\]
\[ \Rightarrow I = \left[ - 2\sqrt{u} \right]\]
\[ \Rightarrow I = \left[ - 2\sqrt{1 - \sin x} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 0 + 2\]
\[ \Rightarrow I = 2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following definite integrals:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Prove that:
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
Γ(n) is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.