Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
\[\int_0^\pi xf\left( \sin x \right)dx = \int_0^\pi \left( \pi - x \right)f\left[ \sin\left( \pi - x \right) \right]dx .................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow \int_0^\pi xf\left( \sin x \right)dx = \int_0^\pi \left( \pi - x \right)f\left( \sin x \right)dx\]
\[ \Rightarrow \int_0^\pi xf\left( \sin x \right)dx = \pi \int_0^\pi f\left( \sin x \right)dx - \int_0^\pi xf\left( \sin x \right)dx\]
\[ \Rightarrow 2 \int_0^\pi xf\left( \sin x \right)dx = \pi \int_0^\pi f\left( \sin x \right)dx\]
\[ \Rightarrow \int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]
APPEARS IN
संबंधित प्रश्न
If f(x) is a continuous function defined on [−a, a], then prove that
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Find: `int logx/(1 + log x)^2 dx`