Advertisements
Advertisements
प्रश्न
Find: `int logx/(1 + log x)^2 dx`
उत्तर
`int logx/(1 + log x)^2 dx = int (log x + 1 - 1)/(1 + log x)^2 dx`
= `int 1/(1 + log x) dx - int 1/(1 + log x)^2 dx`
= `1/(1 + log x) xx x - int (-1)/(1 + log x)^2 xx 1/x xx xdx - int 1/(1 + log x)^2 dx`
= ` x/(1 + log x) + c`
APPEARS IN
संबंधित प्रश्न
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
Γ(n) is
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.