हिंदी

Π / 2 ∫ 0 Sin N X Sin N X + Cos N X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 

योग

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sin^n x}{\sin^n x + \cos^n x} d x ..............(1)\]

\[ = \int_0^\frac{\pi}{2} \frac{\sin^n \left( \frac{\pi}{2} - x \right)}{\sin^n \left( \frac{\pi}{2} - x \right) + \cos^n \left( \frac{\pi}{2} - x \right)} dx\]

\[ = \int_0^\frac{\pi}{2} \frac{\cos^n x}{\cos^n x + \sin^n x} dx \]

\[ = \int_0^\frac{\pi}{2} \frac{\cos^n x}{\sin^n x + \cos^n x} dx ................(2)\]

\[\text{Adding (1) and (2) we get}\]

\[2I = \int_0^\frac{\pi}{2} \frac{\sin^n x}{\sin^n x + \cos^n x} + \frac{\cos^n x}{\sin^n x + \cos^n x} d x \]

\[ = \int_0^\frac{\pi}{2} \frac{\sin^n x + \cos^n x}{\sin^n x + \cos^n x} dx\]

\[ = \int_0^\frac{\pi}{2} 1\ dx\]

\[ = \int_0^\frac{\pi}{2} dx\]

\[ = \left[ x \right]_0^\frac{\pi}{2} \]

\[ = \frac{\pi}{2}\]

\[Hence\ I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 5 | पृष्ठ ९४

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×