Advertisements
Advertisements
प्रश्न
विकल्प
- \[\frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]
- \[\frac{\pi}{2} + \log\left( 2\sqrt{2} \right)\]
- \[\frac{\pi}{6} + \log\left( 2\sqrt{2} \right)\]
\[\frac{\pi}{3} + \log\left( 2\sqrt{2} \right)\]
उत्तर
\[\text{We have}, \]
\[I = \int_0^3 \frac{3x + 1}{x^2 + 9} d x\]
\[I = \int_0^3 \frac{3x}{x^2 + 9}dx + \int_0^3 \frac{1}{x^2 + 9}dx\]
\[ I_1 = \int_0^3 \frac{3x}{x^2 + 9}dx and I_2 = \int_0^3 \frac{1}{x^2 + 9}dx\]
\[\text{Putting} x^2 + 9 = t in I_1 \]
\[ \Rightarrow 2x\ dx = dt\]
\[ \Rightarrow x\ dx = \frac{dt}{2}\]
\[When\ x \to 0; t \to 9\]
\[and\ x \to 3; t \to 18\]
\[ \therefore I = \int_9^{18} \frac{3 dt}{2 t} + \int_0^3 \frac{1}{x^2 + 9}dx\]
\[ = \frac{3}{2} \int_9^{18} \frac{dt}{t} + \int_0^3 \frac{1}{x^2 + 3^2}dx\]
\[ = \frac{3}{2} \left[ \log\left( t \right) \right]_9^{18} + \frac{1}{3} \left[ \tan^{- 1} \left( \frac{x}{3} \right) \right]_0^3 \]
\[ = \frac{3}{2}\left[ \log18 - \log9 \right] + \frac{1}{3}\left( \frac{\pi}{4} - 0 \right)\]
\[ = \frac{3}{2}\left[ \log\frac{18}{9} \right] + \frac{\pi}{12}\]
\[ = \frac{3}{2}\left[ \log 2 \right] + \frac{\pi}{12}\]
\[ = \log\left( \sqrt{8} \right) + \frac{\pi}{12}\]
\[ = \log\left( 2\sqrt{2} \right) + \frac{\pi}{12}\]
\[ = \frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Choose the correct alternative:
Γ(n) is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
Find: `int logx/(1 + log x)^2 dx`