हिंदी

3 ∫ 0 3 X + 1 X 2 + 9 D X = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

विकल्प

  • \[\frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{2} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{6} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{3} + \log\left( 2\sqrt{2} \right)\]

MCQ

उत्तर

\[\frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]

\[\text{We have}, \]
\[I = \int_0^3 \frac{3x + 1}{x^2 + 9} d x\]
\[I = \int_0^3 \frac{3x}{x^2 + 9}dx + \int_0^3 \frac{1}{x^2 + 9}dx\]
\[ I_1 = \int_0^3 \frac{3x}{x^2 + 9}dx and I_2 = \int_0^3 \frac{1}{x^2 + 9}dx\]
\[\text{Putting} x^2 + 9 = t in I_1 \]
\[ \Rightarrow 2x\ dx = dt\]
\[ \Rightarrow x\ dx = \frac{dt}{2}\]
\[When\ x \to 0; t \to 9\]
\[and\ x \to 3; t \to 18\]
\[ \therefore I = \int_9^{18} \frac{3 dt}{2 t} + \int_0^3 \frac{1}{x^2 + 9}dx\]
\[ = \frac{3}{2} \int_9^{18} \frac{dt}{t} + \int_0^3 \frac{1}{x^2 + 3^2}dx\]
\[ = \frac{3}{2} \left[ \log\left( t \right) \right]_9^{18} + \frac{1}{3} \left[ \tan^{- 1} \left( \frac{x}{3} \right) \right]_0^3 \]
\[ = \frac{3}{2}\left[ \log18 - \log9 \right] + \frac{1}{3}\left( \frac{\pi}{4} - 0 \right)\]
\[ = \frac{3}{2}\left[ \log\frac{18}{9} \right] + \frac{\pi}{12}\]
\[ = \frac{3}{2}\left[ \log 2 \right] + \frac{\pi}{12}\]
\[ = \log\left( \sqrt{8} \right) + \frac{\pi}{12}\]
\[ = \log\left( 2\sqrt{2} \right) + \frac{\pi}{12}\]
\[ = \frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 16 | पृष्ठ ११८

संबंधित प्रश्न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Choose the correct alternative:

Γ(n) is


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×