Advertisements
Advertisements
प्रश्न
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
विकल्प
- \[\frac{\pi}{2}\]
- \[\frac{\pi}{4}\]
- \[\frac{\pi}{6}\]
- \[\frac{\pi}{3}\]
उत्तर
\[\text{We have}, \]
\[I = \int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\text{Putting} x = \tan \theta\]
\[ \Rightarrow dx = \sec^2 \theta d\theta\]
\[When\ x \to 0 ; \theta \to 0\]
\[and\ x \to \infty ; \theta \to \frac{\pi}{2}\]
\[\text{Now, integral becomes}\]
\[I = \int\limits_0^\frac{\pi}{2} \frac{\tan \theta}{\left( 1 + \tan \theta \right) \sec^2 \theta} \sec^2 \theta d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \frac{\tan \theta}{1 + \tan \theta} d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \frac{\frac{\sin \theta}{cos \theta}}{1 + \frac{\sin \theta}{\cos \theta}}d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\sin \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\sin\left( \frac{\pi}{2} - \theta \right)}{\sin\left( \frac{\pi}{2} - \theta \right) + \cos\left( \frac{\pi}{2} - \theta \right)}d\theta .................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\cos \theta}{\cos \theta + \sin \theta}d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\cos\theta}{\sin\theta + \cos\theta}d\theta . . . . . \left( 2 \right)\]
\[Adding\ \left( 1 \right) and \left( 2 \right), \text{we get}\]
\[2I = \int\limits_0^\frac{\pi}{2} \frac{\sin\theta + \cos\theta}{\sin\theta + \cos\theta} d\theta\]
\[ \Rightarrow 2I = \int\limits_0^\frac{\pi}{2} d\theta\]
\[ \Rightarrow 2I = \frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{4}\]
\[ \therefore \int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Choose the correct alternative:
Γ(n) is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: