Advertisements
Advertisements
प्रश्न
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
उत्तर
\[\int_0^2 \left( 2 x^2 + 3 \right) d x\]
\[ = \left[ \frac{2 x^3}{3} + 3x \right]_0^2 \]
\[ = \frac{16}{3} + 6 = \frac{34}{3}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`