Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin^3 x d x\]
\[ = \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin x\left( 1 - \cos^2 x \right)dx\]
\[ = \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin x dx - \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin x \cos^2 x dx\]
\[ = \left[ - \cos x \right]_\frac{- \pi}{2}^\frac{\pi}{2} + \left[ \frac{\cos^3 x}{3} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = 0 + 0 = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If f(x) is a continuous function defined on [−a, a], then prove that
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`