Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ e^x = t . Then, e^x dx = dt\]
\[When\ x = 0, t = 1\ and\ x = 1, t = e\]
\[ \therefore I = \int_0^1 \frac{e^x}{1 + e^{2x}} d x\]
\[ \Rightarrow I = \int_1^e \frac{dt}{1 + t^2}\]
\[ \Rightarrow I = \left[ \tan^{- 1} x \right]_1^e \]
\[ \Rightarrow I = \tan^{- 1} e - \tan^{- 1} 1\]
\[ \Rightarrow I = \tan^{- 1} e - \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Choose the correct alternative:
Γ(n) is