हिंदी

Evaluate : 2 π ∫ 0 Cos 5 X D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .

उत्तर

Let I =`int_0^(2x) cos ^5 x  dx` ..... (1)

` cos^5( 2π - x )= cos^5 x `

It is known that,

`int_0^(2a) f (x) dx = 2 int _0^a f (x)dx, if f (2a - x ) = f(x)`

                      = 0 if f (2a - x = - f (x)

∴ `I = 2 int_0^π cos^5 x  dx `

Now 

\[f\left( \pi - x \right) = \cos^5 \left( \pi - x \right) = - \cos^5 x = - f\left( x \right)\]

⇒ I = 2(0 ) = 0                 [ `cos^5(π - x) = - cos^5 x`]                             

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Foreign Set 3

संबंधित प्रश्न

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^2 \left[ x \right] dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×