Advertisements
Advertisements
प्रश्न
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
उत्तर
Let I =`int_0^(2x) cos ^5 x dx` ..... (1)
` cos^5( 2π - x )= cos^5 x `
It is known that,
`int_0^(2a) f (x) dx = 2 int _0^a f (x)dx, if f (2a - x ) = f(x)`
= 0 if f (2a - x = - f (x)
∴ `I = 2 int_0^π cos^5 x dx `
Now
\[f\left( \pi - x \right) = \cos^5 \left( \pi - x \right) = - \cos^5 x = - f\left( x \right)\]
⇒ I = 2(0 ) = 0 [ `cos^5(π - x) = - cos^5 x`]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is