Advertisements
Advertisements
प्रश्न
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
विकल्प
0
2
8
4
उत्तर
8
\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}} d x\]
\[ = \int_0^{2\pi} \sqrt{\sin^2 \frac{x}{4} + \cos^2 \frac{x}{4} + 2\sin\frac{x}{4}\cos\frac{x}{4}} d x\]
\[ = \int_0^{2\pi} \left( \sin\frac{x}{4} + \cos\frac{x}{4} \right)dx\]
\[ = \left[ \frac{- \cos\frac{x}{4}}{\frac{1}{4}} + \frac{\sin\frac{x}{4}}{\frac{1}{4}} \right]_0^{2\pi} \]
\[ = 4 \left[ \sin\frac{x}{4} - \cos\frac{x}{4} \right]_0^{2\pi} \]
\[ = 4\left[ \sin\frac{2\pi}{4} - \cos\frac{2\pi}{4} - \sin 0 + \cos 0 \right]\]
\[ = 4\left[ \sin\frac{\pi}{2} - \cos\frac{\pi}{2} - 0 + 1 \right]\]
\[ = 4\left[ 1 - 0 - 0 + 1 \right]\]
\[ = 4 \times 2\]
\[ = 8\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.