हिंदी

Π / 2 ∫ 0 X 2 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} x^2 \sin x d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} - 2x \cos x dx\]
\[\text{Again, integratting by parts}\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{2} + \left\{ 2 \left[ x \sin x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 1 \sin x dx \right\}\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{2} + 2 \left[ x \sin x \right]_0^\frac{\pi}{2} - \left[ - \cos x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi^2}{4} 0 - 0 + 2\frac{\pi}{2} - 0 + 0 - 2\]
\[ \Rightarrow I = \pi - 2\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 36 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


\[\int\limits_2^3 \frac{1}{x}dx\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


`int_0^(2a)f(x)dx`


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_2^3 e^{- x} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×