Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} x^2 \sin x d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} - 2x \cos x dx\]
\[\text{Again, integratting by parts}\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{2} + \left\{ 2 \left[ x \sin x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 1 \sin x dx \right\}\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{2} + 2 \left[ x \sin x \right]_0^\frac{\pi}{2} - \left[ - \cos x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi^2}{4} 0 - 0 + 2\frac{\pi}{2} - 0 + 0 - 2\]
\[ \Rightarrow I = \pi - 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Find `int sqrt(10 - 4x + 4x^2) "d"x`
`int x^3/(x + 1)` is equal to ______.