Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }= \int_0^\frac{\pi}{2} \frac{1}{1 + \tan x} dx ................(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan\left( \frac{\pi}{2} - x \right)} dx ...............\left[\text{Using }\int_0^a f\left( x \right) d x = \int_0^a f\left( a - x \right) d x \right]\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + cotx} d x ..............(2)\]
\[\text{Adding (1) and (2)}\]
\[ 2I = \int_0^\frac{\pi}{2} \left( \frac{1}{1 + \tan x} + \frac{1}{1 + cotx} \right) d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1 + cotx + 1 + \tan x}{\left( 1 + \tan x \right)\left( 1 + cotx \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan x + cotx}{1 + \tan x + cotx + \tan xcotx}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan x + cotx}{2 + \tan x + cotx}dx\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ 2I = \frac{\pi}{2}\]
\[ \therefore I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Evaluate :
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`