हिंदी

∞ ∫ 0 1 1 + E X D X Equals(A) Log 2 − 1 (B) Log 2 (C) Log 4 − 1 (D) − Log 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals

विकल्प

  •  log 2 − 1

  •  log 2

  • log 4 − 1

  •  − log 2

MCQ

उत्तर

 log 2 

\[\text{We have}, \]
\[I = \int_0^\infty \frac{1}{1 + e^x} d x\]
\[\text{Putting } e^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \Rightarrow dx = \frac{dt}{t}\]
\[\text{When}\ x \to 0; t \to 1\]
\[\text{and }x \to \infty ; t \to \infty \]
\[ \therefore I = \int_1^\infty \frac{1}{t\left( 1 + t \right)} d t\]
\[ = \int_1^\infty \frac{1}{t + t^2} d t\]
\[ = \int_1^\infty \frac{1}{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2} d t\]

\[= \frac{1}{2 \times \frac{1}{2}} \left[ \log\left| \frac{t + \frac{1}{2} - \frac{1}{2}}{t + \frac{1}{2} + \frac{1}{2}} \right| \right]_1^\infty \]

\[ = \left[ \log\left| \frac{t}{t + 1} \right| \right]_1^\infty \]

\[ = \left[ \log\left| \frac{\frac{t}{t}}{\frac{t}{t} + \frac{1}{t}} \right| \right]_1^\infty \]

\[ = \left[ \log\left| \frac{1}{1 + \frac{1}{t}} \right| \right]_1^\infty \]

\[ = \log\frac{1}{1 + 0} - \log\frac{1}{1 + 1}\]

\[ = \log\left( 1 \right) - \log\left( \frac{1}{2} \right)\]

\[ = 0 - \left( - \log2 \right)\]

\[ = \log2\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 6 | पृष्ठ ११७

संबंधित प्रश्न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_1^e \log x\ dx =\]

Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


`int_0^(2a)f(x)dx`


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Choose the correct alternative:

Γ(n) is


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×