Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
विकल्प
log 2 − 1
log 2
log 4 − 1
− log 2
उत्तर
log 2
\[\text{We have}, \]
\[I = \int_0^\infty \frac{1}{1 + e^x} d x\]
\[\text{Putting } e^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \Rightarrow dx = \frac{dt}{t}\]
\[\text{When}\ x \to 0; t \to 1\]
\[\text{and }x \to \infty ; t \to \infty \]
\[ \therefore I = \int_1^\infty \frac{1}{t\left( 1 + t \right)} d t\]
\[ = \int_1^\infty \frac{1}{t + t^2} d t\]
\[ = \int_1^\infty \frac{1}{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2} d t\]
\[= \frac{1}{2 \times \frac{1}{2}} \left[ \log\left| \frac{t + \frac{1}{2} - \frac{1}{2}}{t + \frac{1}{2} + \frac{1}{2}} \right| \right]_1^\infty \]
\[ = \left[ \log\left| \frac{t}{t + 1} \right| \right]_1^\infty \]
\[ = \left[ \log\left| \frac{\frac{t}{t}}{\frac{t}{t} + \frac{1}{t}} \right| \right]_1^\infty \]
\[ = \left[ \log\left| \frac{1}{1 + \frac{1}{t}} \right| \right]_1^\infty \]
\[ = \log\frac{1}{1 + 0} - \log\frac{1}{1 + 1}\]
\[ = \log\left( 1 \right) - \log\left( \frac{1}{2} \right)\]
\[ = 0 - \left( - \log2 \right)\]
\[ = \log2\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
Γ(n) is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`