Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[ I = \int_0^\pi \frac{x}{1 + \cos\alpha \sin x} d x . . . . . \left( 1 \right)\]
\[ = \int_0^\pi \frac{\pi - x}{1 + \cos\alpha \sin\left( \pi - x \right)}dx\]
\[ = \int_0^\pi \frac{\pi - x}{1 + \cos\alpha \sin x}dx . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right) \text{we get}, \]
\[2I = \int_0^\pi \frac{x + \pi - x}{1 + \cos\alpha \sin x} d x\]
\[ \Rightarrow I = \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha\ sinx} dx\]
\[= \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha sinx}\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\cos\alpha \tan \frac{x}{2}}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\cos\alpha \tan \frac{x}{2}}dx\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 x dx = dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \pi; t \to \infty \]
\[ \therefore I = \frac{\pi}{2} \int_0^\infty \frac{2}{1 + t^2 + 2\cos\alpha t}dt\]
\[ = \frac{\pi}{2} \int_0^\infty \frac{2}{\left( t + \cos\alpha \right)^2 - \cos^2 \alpha + 1}dt\]
\[ = \pi \int_0^\infty \frac{1}{\left( t + \cos\alpha \right)^2 + \sin^2 \alpha}dt\]
\[ = \pi \left[ \frac{1}{\sin \alpha} \tan^{- 1} \left( \frac{t + \cos \alpha}{\sin \alpha} \right) \right]_0^1 \]
\[ = \frac{\pi}{sin\alpha}\left[ \tan^{- 1} \left( \infty \right) - \tan^{- 1} \left( \cot\alpha \right) \right]\]
\[ = \frac{\pi}{sin\alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left( \tan\left( \frac{\pi}{2} - \alpha \right) \right) \right]\]
\[ = \frac{\pi\alpha}{sin\alpha}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If f(x) is a continuous function defined on [−a, a], then prove that
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
Write the coefficient a, b, c of which the value of the integral
Evaluate :
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.