हिंदी

Π ∫ 0 X 1 + Cos α Sin X D X , 0 < α < π - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]
योग

उत्तर

\[\text{We have}, \]

\[ I = \int_0^\pi \frac{x}{1 + \cos\alpha \sin x} d x . . . . . \left( 1 \right)\]

\[ = \int_0^\pi \frac{\pi - x}{1 + \cos\alpha \sin\left( \pi - x \right)}dx\]

\[ = \int_0^\pi \frac{\pi - x}{1 + \cos\alpha \sin x}dx . . . . . \left( 2 \right)\]

\[\text{Adding} \left( 1 \right) and \left( 2 \right) \text{we get}, \]

\[2I = \int_0^\pi \frac{x + \pi - x}{1 + \cos\alpha \sin x} d x\]

\[ \Rightarrow I = \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha\ sinx} dx\]

\[= \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha sinx}\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\cos\alpha \tan \frac{x}{2}}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\cos\alpha \tan \frac{x}{2}}dx\]

\[\text{Putting }\tan\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \sec^2 x dx = dt\]

\[\text{When }x \to 0; t \to 0\]

\[\text{and }x \to \pi; t \to \infty \]

\[ \therefore I = \frac{\pi}{2} \int_0^\infty \frac{2}{1 + t^2 + 2\cos\alpha t}dt\]

\[ = \frac{\pi}{2} \int_0^\infty \frac{2}{\left( t + \cos\alpha \right)^2 - \cos^2 \alpha + 1}dt\]

\[ = \pi \int_0^\infty \frac{1}{\left( t + \cos\alpha \right)^2 + \sin^2 \alpha}dt\]

\[ = \pi \left[ \frac{1}{\sin \alpha} \tan^{- 1} \left( \frac{t + \cos \alpha}{\sin \alpha} \right) \right]_0^1 \]

\[ = \frac{\pi}{sin\alpha}\left[ \tan^{- 1} \left( \infty \right) - \tan^{- 1} \left( \cot\alpha \right) \right]\]

\[ = \frac{\pi}{sin\alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left( \tan\left( \frac{\pi}{2} - \alpha \right) \right) \right]\]

\[ = \frac{\pi\alpha}{sin\alpha}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 16 | पृष्ठ ९५

संबंधित प्रश्न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int_0^1 | x\sin \pi x | dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^\infty e^{- x} dx .\]

If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×