Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
उत्तर
\[\int_0^\pi \frac{1}{6 - \cos x} d x\]
\[ = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{6 + 6 \tan^2 \frac{x}{2} - 1 + \tan^2 \frac{x}{2}} d x\]
\[ = \int_0^\pi \frac{se c^2 \frac{x}{2}}{5 + 7 \tan^2 \frac{x}{2}}dx\]
\[Let, \tan\frac{x}{2} = t, then \frac{1}{2}se c^2 \frac{x}{2} dx = dt\]
Therefore the integral becomes
\[ \int_0^\infty \frac{2dt}{5 + 7 t^2} \]
\[ = \frac{2}{7} \int_0^\infty \frac{dt}{\frac{5}{7} + t^2} \]
\[ = \frac{2}{\sqrt{35}} \left[ \tan^{- 1} \frac{\sqrt{7}t}{\sqrt{5}} \right]_0^\infty \]
\[ = \frac{\pi}{\sqrt{35}}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Find: `int logx/(1 + log x)^2 dx`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.