Advertisements
Advertisements
प्रश्न
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
उत्तर
Let f(θ)= sin2θ
f(– θ) = sin2(– θ)
= [sin (– θ)]2
= [– sin θ]2
= sin2θ
f(– θ) = f(θ)
∴ f(θ) is an even function
`int_(- pi/2)^(pi/2) sin^2theta "d"theta = 2 xx int_0^(pi/2) sin^2theta "d"theta`
= `2 xx int_0^(pi/2) ((1 - cos 2theta)/2) "d"theta`
= `2 xx 1/2 int_0^(pi/2) (1 - cos 2theta) "d"theta`
= `[theta - (sin 2theta)/2]_0^(pi/2)`
= `[pi/2 - (sin2(pi/2))/2] - [0]`
= `pi/2 - 0`
= `pi/2`
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`