Advertisements
Advertisements
प्रश्न
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
उत्तर
let a + b - x = t
⇒ dx = -dt
when x = a,t = b and x = b,t = a
`int_a^b ƒ("x") d"x" = -int_b^aƒ(a + b -"t")d"t"`
= `int_a^bƒ(a + b -"t")d"t" ...[∵ int_a^b ƒ("x") d"x" = -int_b^a ƒ("x") d"x"]`
= `int_a^bƒ(a + b -"x")d"x" ...[∵ int_a^b ƒ("x") d"x" = int_a^b ƒ("t") d"t"]`
Hence proved.
let `I = int_(π/6)^(π/3) (d"x")/(1+ sqrt(tan "x")) = int_(π/6)^(π/3)(sqrt(cos"x")d"x")/(sqrt(cos"x")+ sqrt(sin"x"))` .....(ii)
Then, using the property from (i)
`I = int_(π/6)^(π/3) (sqrtcos(π/3 + π/6 - "x") d"x")/ (sqrtcos(π/3 + π/6 - "x") + sqrtsin(π/3 + π/6 - "x"))`
= `int_(π/6)^(π/3) (sqrt(sin"x")d"x")/(sqrt(sin"x") + sqrt(cos"x")` ......(iii)
Adding (ii) and (iii), we get
`2I = int_(π/6)^(π/3)d"x" = ["x"](π/3)/(π/6) = π/3 - π/6 = π/6`
⇒ `I = π/12`
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
If n > 0, then Γ(n) is