हिंदी

Prove that ∫ B a ƒ ( X ) D X = ∫ B a ƒ ( a + B − X ) D X and Hence Evaluate ∫ π 3 π 6 D X 1 + √ Tan X - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`

योग

उत्तर

let a + b - x = t

⇒ dx = -dt

when x = a,t = b and x = b,t = a

`int_a^b ƒ("x") d"x" = -int_b^aƒ(a + b -"t")d"t"`

= `int_a^bƒ(a + b -"t")d"t"              ...[∵ int_a^b ƒ("x") d"x" = -int_b^a ƒ("x") d"x"]`

= `int_a^bƒ(a + b -"x")d"x"            ...[∵ int_a^b ƒ("x") d"x" = int_a^b ƒ("t") d"t"]`

Hence proved.

let `I = int_(π/6)^(π/3) (d"x")/(1+ sqrt(tan "x")) = int_(π/6)^(π/3)(sqrt(cos"x")d"x")/(sqrt(cos"x")+ sqrt(sin"x"))`           .....(ii)

Then, using the property from (i)

`I = int_(π/6)^(π/3) (sqrtcos(π/3 + π/6 - "x") d"x")/ (sqrtcos(π/3 + π/6 - "x") + sqrtsin(π/3 + π/6 - "x"))`

= `int_(π/6)^(π/3) (sqrt(sin"x")d"x")/(sqrt(sin"x") + sqrt(cos"x")`                                                   ......(iii)

Adding (ii) and (iii), we get

`2I = int_(π/6)^(π/3)d"x" = ["x"](π/3)/(π/6) = π/3 - π/6 = π/6`

⇒ `I = π/12`

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/3/1

संबंधित प्रश्न

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

\[\int\limits_0^2 \left[ x \right] dx .\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Choose the correct alternative:

Γ(n) is


Choose the correct alternative:

If n > 0, then Γ(n) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×