हिंदी

The Value of π ∫ 0 X Tan X Sec X + Cos X D X is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .

विकल्प

  • \[\frac{\pi^2}{4}\]
  • \[\frac{\pi^2}{2}\]
  • \[\frac{3 \pi^2}{2}\]
  • \[\frac{\pi^2}{3}\]

MCQ

उत्तर

\[ \frac{\pi^2}{4}\]
 
\[\text{We have}, \]

\[ I = \int_0^\pi \frac{x \tan x}{\sec x + \cos x} d x ..................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\tan\left( \pi - x \right)}{\sec\left( \pi - x \right) + \cos\left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)tanx}{\sec x + \cos x} dx .......................(2)\]
Adding (1) and (2), we get
\[2I = \int_0^\pi \left[ \frac{x\tan x}{\sec x + \cos x} + \frac{\left( \pi - x \right)tan x}{\sec x + \cos x} \right] d x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\pi \frac{\pi \tan x}{\sec x + \cos x}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{sin x}{1 + \cos^2 x} dx\]
\[\text{Putting} \cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[ \Rightarrow \sin x dx = - dt\]
\[When\ x \to 0; t \to 1\]
\[and\ x \to \pi; t \to - 1\]
\[ \Rightarrow I = \frac{\pi}{2} \int_1^{- 1} \frac{- dt}{1 + t^2}\]
\[ = \frac{\pi}{2} \int_{- 1}^1 \frac{dt}{1 + t^2}\]
\[ = \frac{\pi}{2} \left[ \tan^{- 1} t \right]_{- 1}^1 \]
\[ = \frac{\pi}{2}\left[ \tan^{- 1} \left( 1 \right) - \tan^{- 1} \left( - 1 \right) \right]\]
\[ = \frac{\pi}{2}\left[ \frac{\pi}{4} - \left( - \frac{\pi}{4} \right) \right]\]
\[ = \frac{\pi}{2} \times \frac{\pi}{2} = \frac{\pi^2}{4}\]
\[Hence\ I = \frac{\pi^2}{4}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 3 | पृष्ठ ११७

संबंधित प्रश्न

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Choose the correct alternative:

Γ(n) is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×