Advertisements
Advertisements
प्रश्न
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
विकल्प
- \[\frac{\pi^2}{4}\]
- \[\frac{\pi^2}{2}\]
- \[\frac{3 \pi^2}{2}\]
\[\frac{\pi^2}{3}\]
उत्तर
\[ I = \int_0^\pi \frac{x \tan x}{\sec x + \cos x} d x ..................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\tan\left( \pi - x \right)}{\sec\left( \pi - x \right) + \cos\left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)tanx}{\sec x + \cos x} dx .......................(2)\]
Adding (1) and (2), we get
\[2I = \int_0^\pi \left[ \frac{x\tan x}{\sec x + \cos x} + \frac{\left( \pi - x \right)tan x}{\sec x + \cos x} \right] d x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\pi \frac{\pi \tan x}{\sec x + \cos x}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{sin x}{1 + \cos^2 x} dx\]
\[\text{Putting} \cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[ \Rightarrow \sin x dx = - dt\]
\[When\ x \to 0; t \to 1\]
\[and\ x \to \pi; t \to - 1\]
\[ \Rightarrow I = \frac{\pi}{2} \int_1^{- 1} \frac{- dt}{1 + t^2}\]
\[ = \frac{\pi}{2} \int_{- 1}^1 \frac{dt}{1 + t^2}\]
\[ = \frac{\pi}{2} \left[ \tan^{- 1} t \right]_{- 1}^1 \]
\[ = \frac{\pi}{2}\left[ \tan^{- 1} \left( 1 \right) - \tan^{- 1} \left( - 1 \right) \right]\]
\[ = \frac{\pi}{2}\left[ \frac{\pi}{4} - \left( - \frac{\pi}{4} \right) \right]\]
\[ = \frac{\pi}{2} \times \frac{\pi}{2} = \frac{\pi^2}{4}\]
\[Hence\ I = \frac{\pi^2}{4}\]
APPEARS IN
संबंधित प्रश्न
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
Γ(n) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.