Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
योग
उत्तर
`int_0^1 "e"^(2x) "d"x = ["e"^(2x)/2]_0^1`
= `1/2 ["e"^(2x)]_0^1`
= `1/2["e"^(2(1)) - "e"^(2(0))]`
= `1/2 ["e"^2 - "e"^0]`
= `1/2 ["e"^2 - 1]`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]
\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]
\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]
\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]
\[\int_0^1 | x\sin \pi x | dx\]
\[\int\limits_1^3 \left( 3x - 2 \right) dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.